

U.S. Department of Energy

Fuel Cells for Portable Power

JoAnn Milliken

Office of Transportation Technologies
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585
202-586-2480
JoAnn.Milliken@ee.doe.gov

January 15-17, 2002 Phoenix, AZ

Presentation Outline

- Why are we here?
- DOE Transportation Fuel Cell Program
- Workshop Objectives
- Guidelines for Workshop Product
- What have past DOE workshops achieved?

Why are we here?

Government:

Cost - the primary barrier to commercialization of PEMFCs for automobiles

Industry:

Business plans include fuel cells or fuel cell powered products

Industry/Academia/National Labs:

Funding opportunities for fuel cell research, development, demonstrations

Fuel Cells for Transportation Program Goal/Fuel Strategy

Our goal is to develop highly efficient, low- or zero-emission, cost-competitive automotive fuel cell power system technologies that operate on conventional and alternative fuels.

FreedomCAR*:

Energy Security for America's Transportation

Vision:

Affordable full function cars and trucks are free of foreign oil and harmful emissions, without sacrificing freedom of mobility and freedom of vehicle choice.

Strategic Approach:

- Develop technologies to enable mass production of affordable hydrogen-powered fuel cell vehicles and assure the hydrogen infrastructure to support them.
- Continue support for other technologies to dramatically reduce oil consumption and environmental impacts. Adopt policies that stimulate consumer demand for vehicles and fuels that enhance energy security and reduce pollution.
- Instead of single vehicle goals, develop technologies applicable across a wide range of passenger vehicles.

Automotive Fuel Cells Key Technical Challenges

There are significant technical and economic barriers that will keep fuel cell vehicles from making significant market penetration for 10 years.

- Cost/Affordability (Platinum)
- Start-Up (Gasoline System)
- Durability
- Thermal/Water Management
 - heat rejection
- Air Management
- Hydrogen Storage/Refueling

Cost of Fuel Cell Systems

Status versus Targets

Status

Targets

Projected Manufacturing Cost of Gasoline PEMFC Systems¹

~ \$300/kW

DOE Automotive PEMFC Target²

\$45/kW

Current manufacturing cost of portable power Li battery³

~ \$5,000/kW

¹ Today's cost, based on 500,000 units/year

² 2010 target; cost-competitive with, not cost-equivalent to, internal combustion engines

³ Estimated

Challenges/Strategy for Cost Reduction

Cost Challenges:

- high precious metal loading

- low voltage cells, low power density | large number of cells in a stack

- low activity, low durability shift catalysts

- lack of high-volume fabrication processes for MEAs, bipolar plates

R&D Activities:		Projected Cost*	<u>Target</u>
•	High volume fabrication of MEAs with reduced Pt loading - 3M, SwRI/W.L. Gore, IFC, DeNora/DuPont	MEA: \$100/kW	\$10/kW
•	New cathode structures to improve cell		
	performance - 3M, IFC, DeNora, SMP, LANL, LBNL, BNL, NRL		
•	Manufacturing capability for composite bipolar plates – GTI, Porvair	BP: \$10/kW	\$10/kW
•	Improved water-gas-shift catalysts – ANL, NexTech, U. Michigan	WGS: \$13/kW	\$3/kW
\	Manufacturing Capability for Portable Power Fuel Cells.		

Workshop Objectives

- Identify and prioritize the technical barriers to commercialization of PEMFCs for portable applications.
- Draft a research, development, and demonstration plan to overcome the barriers.
- Develop a strategy to use the commercialization of portable power fuel cells to facilitate commercialization of automotive PEMFCs.

The Workshop Product will be a RD&D Roadmap....

And a Demonstration Plan with Transition Strategy

Given the high risk nature of the accelerated timeline, careful decision criteria prior to each phase need to be jointly established by Industry and Government.

Previous DOE Workshops/Outcomes

Basic and Applied Research Needs for PEMFCs

- Established a high-temperature membrane (HTM) R&D program
 - > LANL, multiple universities
 - Industry projects w/ 3M, UTC Fuel Cells, DeNora/DuPont
 - > HTM Working Group
- Initiated projects to improve cathode
 - > LANL, LBNL, Superior MicroPowders, other industry
- Expanded projects to reduce Pt content
 - > NRL, BNL

Sensor Needs for PEM Fuel Cells and DI Engines

- Initiated a Sensor R&D Program
 - National Labs LANL, LLNL
 - Industry UTRC, Honeywell

For Further Information

DOE Fuel Cells for Transportation Program:

Pat Davis: 202-586-8061, patrick.davis@ee.doe.gov

Nancy Garland: 202-586-5673, nancy.garland@ee.doe.gov

Donna Ho: 202-586-8000, donna.ho@ee.doe.gov

Peter Devlin, 202-586-4905, peter.devlin@ee.doe.gov

Office of Transportation Technologies: www.ott.doe.gov

Additional Information

Program Activities – Fuel Cells

FY 2002 Budget = \$41.9M

Fuel Cell Stack Subsystem

- High Temperature Membrane R&D
- MEA/Bipolar Plate Manufacturing Processes
- Cost Reduction R&D
- Durability Studies
- Direct Methanol Fuel Cells

Fuel Processing/ Storage Subsystem

- Catalyst R&D
- Fuel Processor R&D
- Fuel Effects/Durability Studies
- Microchannel Components
- CO & Sulfur Management
- Hydrogen Storage R&D

\$7.6 Systems

- System Validation
- System Modeling
- Ancillary Components (Compressors, Sensors)
- Cost Analyses
- Emissions Testing

Program Addresses Technical Challenges through cost-shared R&D with industry and applied research at national labs and universities

Challenge

Current R&D Projects

Cost

ADL/DTI – Cost Analyses
3M, SWRI/W.L. Gore – High Volume, Low Pt MEA Fabrication
GTI, ORNL, Porvair – Bipolar Plates
ANL, UMich, NexTech - Improved FP, WGS Catalysts
LANL, NRL, BNL – Low Pt Electrodes

Durability

LANL, many industry projects are now addressing durability.

Air Management

IFC, ADL, Honeywell, Mechanology, Meruit - Compressors

Start-Up (Fuel Processing)

Nuvera, McDermott, Catalytica - fuel processing system/components ANL, UMich, NexTech - Improved FP, WGS Catalysts PNNL - Microchannel Fuel Processing

Thermal/Water Management

3M, IFC, DeNora/DuPont, LANL/Universities → High temperature membranes ORNL – Carbon foams for radiators, humidifiers

H₂ Storage, Refueling

UTRC, SwRI – H₂ Storage R&D, Testing Air Products, GE – Refueling technologies

Fuel Cell Program Implementation

